Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)In this paper we study the local well-posedness of the fractional Navier-Stokes system with initial data belonging to a sum of two pseudomeasure-type spaces denoted by PM(a,b) := PM(a) + PM(b). The proof requires showing a Holder-type inequality in PM(a,b), as well as establishing estimates of the semigroup generated by the fractional power of Laplacian (-Delta)(gamma) on these spaces. (C) 2011 Elsevier Ltd. All rights reserved.741656185630Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São P...
Chaker J, Ki M. Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Advance...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We study the Navier-Stokes syste...
We study the Navier-Stokes system with initial data belonging to sum of two weak-Lp spaces, which co...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
We introduce and analyze an explicit formulation of fractional powers of the Lam\'e-Navier system of...
We consider the 3D incompressible hypodissipative Navier-Stokes equations, when the dissipation is g...
We prove global well-posedness for instationary Navier-Stokes equations with initial data in Besov s...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
International audienceIn this article we consider the Stokes problem with Navier-type boundary condi...
FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIM...
By virtue of barrier arguments we prove C^\alpha-regularity up to the boundary for the weak solution...
This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nire...
Chaker J, Ki M. Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Advance...
Chaker J, Ki M. Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Advance...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)We study the Navier-Stokes syste...
We study the Navier-Stokes system with initial data belonging to sum of two weak-Lp spaces, which co...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
We introduce and analyze an explicit formulation of fractional powers of the Lam\'e-Navier system of...
We consider the 3D incompressible hypodissipative Navier-Stokes equations, when the dissipation is g...
We prove global well-posedness for instationary Navier-Stokes equations with initial data in Besov s...
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Ci...
International audienceIn this article we consider the Stokes problem with Navier-type boundary condi...
FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIM...
By virtue of barrier arguments we prove C^\alpha-regularity up to the boundary for the weak solution...
This monograph focuses on the partial regularity theorem, as developed by Caffarelli, Kohn, and Nire...
Chaker J, Ki M. Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Advance...
Chaker J, Ki M. Regularity estimates for fractional orthotropic p-Laplacians of mixed order. Advance...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...
The first part deals with the spatial asymptotical behavior of solutions of the incompressible Navie...