By employing the two-fluid model, a system of nonlinear equations for low-frequency electromagnetic waves in nonuniform collisional magnetoplasmas has been derived. The plasma contains both the equilibrium density gradient and sheared flows. In the linear limit, a local dispersion relation has been obtained and analyzed in several interesting limiting cases. It is found that equilibrium sheared plasma flows cause instabilities of Alfven-type waves even in the absence of the density gradient. The numerical results also show a large growth rate of electromagnetic parallel velocity shear (PVS) mode compared to the electrostatic mode for some ionospheric parameters. For this case, the temporal nonlinear behavior of the relevant governing mode c...