We study a reactive field transported by a non-Gaussian process instead of a standard diffusion. If the process increments follow a probability distribution with exponential tails, the usual qualitative behaviour of the standard reaction diffusion system, i.e., exponential tails for the reacting field and a constant front speed, are recovered. But, if the process has power law tails and the reaction is pulled, the reacting field shows power law tails and the front speed increases exponentially with time. The comparison with other transport processes which exhibit anomalous diffusion shows that not only the presence of anomalous diffusion, but also its detailed mechanism, is relevant for the front propagation in reactive systems
International audienceWe experimentally address the propagation of chemical reaction fronts in a cha...
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using s...
PACS. 87.10.+e – General theory and mathematical aspects. PACS. 05.40.-a – Fluctuation phenomena, ra...
We investigate front propagation in systems with diffusive and subdiffusive behavior. The scaling be...
We briefly review some aspects of the anomalous diffusion, and its relevance in reactive s...
We study the transient dynamics of single species reaction diffusion systems whose reaction terms f(...
Recently there has been a certain controversy about the scaling properties of reaction-subdiffusion ...
We present an approach to determining the speed of wave-front solutions to reaction-transport proces...
A simulation study is proposed where a reaction-diffusion equation in a semi-infinite medium is nume...
textIn this thesis, we study the asymptotic behavior of solutions to the reaction-advection-diffusi...
The speed of pulled fronts for parabolic fractional-reaction-dispersal equations is derived and anal...
We study the transient dynamics of single species reaction diffusion systems whose reaction terms f(...
The problem of asymptotic features of front propagation in stirred media is addressed for laminar an...
In the present study, we examine non-Gaussian spreading of solutes subject to advection, dispersion ...
We consider an irreversible autocatalytic conversion reaction A+B->2A under subdiffusion described b...
International audienceWe experimentally address the propagation of chemical reaction fronts in a cha...
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using s...
PACS. 87.10.+e – General theory and mathematical aspects. PACS. 05.40.-a – Fluctuation phenomena, ra...
We investigate front propagation in systems with diffusive and subdiffusive behavior. The scaling be...
We briefly review some aspects of the anomalous diffusion, and its relevance in reactive s...
We study the transient dynamics of single species reaction diffusion systems whose reaction terms f(...
Recently there has been a certain controversy about the scaling properties of reaction-subdiffusion ...
We present an approach to determining the speed of wave-front solutions to reaction-transport proces...
A simulation study is proposed where a reaction-diffusion equation in a semi-infinite medium is nume...
textIn this thesis, we study the asymptotic behavior of solutions to the reaction-advection-diffusi...
The speed of pulled fronts for parabolic fractional-reaction-dispersal equations is derived and anal...
We study the transient dynamics of single species reaction diffusion systems whose reaction terms f(...
The problem of asymptotic features of front propagation in stirred media is addressed for laminar an...
In the present study, we examine non-Gaussian spreading of solutes subject to advection, dispersion ...
We consider an irreversible autocatalytic conversion reaction A+B->2A under subdiffusion described b...
International audienceWe experimentally address the propagation of chemical reaction fronts in a cha...
The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using s...
PACS. 87.10.+e – General theory and mathematical aspects. PACS. 05.40.-a – Fluctuation phenomena, ra...