This paper considers a new adaptive wavelet solver for two-dimensional systems based on an adaptive block refinement (ABR) method that takes advantage of the quadtree structure of dyadic blocks in rectangular regions of the plane. The computational domain is formed by non-overlapping blocks. Each block is a uniform grid, but the step size may change from one block to another. The blocks are not predetermined, but they are dynamically constructed according to the refinement needs of the numerical solution. The decision over whether a block should be refined or unrefined is taken by looking at the magnitude of wavelet coefficients of the numerical solution on such block. The wavelet coefficients are defined as differences between values inter...