La représentation des fonctionnelles causales non linéaires par des séries en plusieurs variables non commutatives permet de décrire des phénomènes non linéaires nouveaux et de les expliquer par les propriétés combinatoires des algèbres de Lie libres.By means of the representation of non-linear causal functionals by power series in several non-commutative variables, it becomes possible to describe new non-linear phenomena and to explain them by the combinatorial properties of free Lie algebras
Nous présentons un nouveau q-analogue de la correspondance exponentielle/logarithme qui nous permet ...
Il metodo del calcolo combinatorio è applicato per dimostrare al-cune formule di espansioni relative...
We consider the graded Hopf algebra $NCSym$ of symmetric functions with non-commutative variables, w...
In nonlinear control, it is helpful to choose a formalism well suited to computations involving solu...
AbstractIn this paper we present a new approach to causal functionals. We introduce combinatorial in...
We show how to use the theory of non commutative symmetric functions to construct a one parameter fa...
We study a particular group law on formal power series in non-commuting parameters induced by their ...
Abstract. Consider the algebra Q〈〈x1, x2,...〉 〉 of formal power series in countably many noncommutin...
Formal power series in several non-commutative indeterminates play for the realization of regular (i...
In this book the authors develop a theory of free noncommutative functions, in both algebraic and an...
Le but de cette thèse est d'étudier le thème de la «sélection de variables», également connu comme l...
In this thesis we study some algebraic problems which can be reduced to solving a functional equatio...
[in "Special Issue : Lie Computations", G. Jacob, V. Koseleff, Eds.]International audienceThis paper...
The theory of noncommutative geometry provides an interesting mathematical background for developing...
The structure theory of Lie algebras is used to classify nonlinear systems according to a Levi decom...
Nous présentons un nouveau q-analogue de la correspondance exponentielle/logarithme qui nous permet ...
Il metodo del calcolo combinatorio è applicato per dimostrare al-cune formule di espansioni relative...
We consider the graded Hopf algebra $NCSym$ of symmetric functions with non-commutative variables, w...
In nonlinear control, it is helpful to choose a formalism well suited to computations involving solu...
AbstractIn this paper we present a new approach to causal functionals. We introduce combinatorial in...
We show how to use the theory of non commutative symmetric functions to construct a one parameter fa...
We study a particular group law on formal power series in non-commuting parameters induced by their ...
Abstract. Consider the algebra Q〈〈x1, x2,...〉 〉 of formal power series in countably many noncommutin...
Formal power series in several non-commutative indeterminates play for the realization of regular (i...
In this book the authors develop a theory of free noncommutative functions, in both algebraic and an...
Le but de cette thèse est d'étudier le thème de la «sélection de variables», également connu comme l...
In this thesis we study some algebraic problems which can be reduced to solving a functional equatio...
[in "Special Issue : Lie Computations", G. Jacob, V. Koseleff, Eds.]International audienceThis paper...
The theory of noncommutative geometry provides an interesting mathematical background for developing...
The structure theory of Lie algebras is used to classify nonlinear systems according to a Levi decom...
Nous présentons un nouveau q-analogue de la correspondance exponentielle/logarithme qui nous permet ...
Il metodo del calcolo combinatorio è applicato per dimostrare al-cune formule di espansioni relative...
We consider the graded Hopf algebra $NCSym$ of symmetric functions with non-commutative variables, w...