Soybean rust is the most aggressive soybean disease in Brazil. Despite its epidemiology is known, there are few studies about factors that cause it based on field data. This paper aimed to report influence of weather variables on rust occurrence using the decision tree technique. The models were developed based on disease detection dataset during harvests (2007/08 to 2010/11), temperature and rainfall variables at varied time windows prior to disease detection. For each disease "occurrence" record, a corresponding "non-occurrence" was generated based on the assumption that disease was not present at the thirtieth day prior to the report date, due to unfavorable weather conditions. The training set for modeling consisted of 45 rainfall and t...