[No abstract available]882570577Brumatti, Número de Geradores para Ideais Invertíveis e para Módules sobre Anéis de Polinomios (1980) Tese de Doutoramento, , IMPA, Rio de JaneiroP. R. Brumatti and Y. Lequain, Number of generators of a module over a ring of polynomials, to appearEisenbud, Evans, Jr., Three conjectures about modules over polynomial rings (1973) Conference on Commutative Algebra, , Lecture Notes in Mathematics No. 311, Springer-Verlag, Berlin/Heidelberg/New YorkHeitmann, Generating ideal in Prüfer domains (1976) Pacific Journal of Mathematics, 62, pp. 117-126Hochster, Prime ideal structure in commutative rings (1969) Transactions of the American Mathematical Society, 142, pp. 43-60Kumar, On two conjectures about polynomial rin...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
By using Gröbner bases of ideals of polynomial algebras over a field, many implemented algorithms ma...
Preprint enviat per a la seva publicació en una revista científica: Mathematische Zeitschrift. 1991,...
AbstractLet A be a commutative ring and M be a projective module of rank k with n generators. Let h=...
AbstractFor a Noetherian local ring R, if R/a is Cohen–Macaulay, then the ideal a can be generated b...
Abstract. Let R be a local ring and M,N be finitely generated R-modules. The complexity of (M,N), de...
Abstract Let A be a commutative ring and M be a projective module of rank k with n generators. Let h...
In this talk I will show how to estimate degrees of generators of local cohomology modules. I will a...
The purpose of this master thesis is to relate projective covers of modules to minimal sets of gener...
Let R be a commutative, Noetherian ring and I ⊂ R be an ideal such that I is locally generated by n ...
AbstractThe well-known Forster-Swan theorem, and the stable version of this result given by Eisenbud...
AbstractGiven two finitely generated R-modules A and B, what can we say about the number of generato...
AbstractLet R be a local ring and M,N be finitely generated R-modules. The complexity of (M,N), deno...
AbstractThe well-known Forster-Swan theorem, and the stable version of this result given by Eisenbud...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
By using Gröbner bases of ideals of polynomial algebras over a field, many implemented algorithms ma...
Preprint enviat per a la seva publicació en una revista científica: Mathematische Zeitschrift. 1991,...
AbstractLet A be a commutative ring and M be a projective module of rank k with n generators. Let h=...
AbstractFor a Noetherian local ring R, if R/a is Cohen–Macaulay, then the ideal a can be generated b...
Abstract. Let R be a local ring and M,N be finitely generated R-modules. The complexity of (M,N), de...
Abstract Let A be a commutative ring and M be a projective module of rank k with n generators. Let h...
In this talk I will show how to estimate degrees of generators of local cohomology modules. I will a...
The purpose of this master thesis is to relate projective covers of modules to minimal sets of gener...
Let R be a commutative, Noetherian ring and I ⊂ R be an ideal such that I is locally generated by n ...
AbstractThe well-known Forster-Swan theorem, and the stable version of this result given by Eisenbud...
AbstractGiven two finitely generated R-modules A and B, what can we say about the number of generato...
AbstractLet R be a local ring and M,N be finitely generated R-modules. The complexity of (M,N), deno...
AbstractThe well-known Forster-Swan theorem, and the stable version of this result given by Eisenbud...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
An algorithmic approach to determining local and global module structures : Anhang zu D. Burns: On t...
By using Gröbner bases of ideals of polynomial algebras over a field, many implemented algorithms ma...