Facebook自從在台灣推出以來,已有超過一千三百萬的使用者帳號,是最熱門的社群網站,其中蘊含了龐大的使用者資料。從使用者學歷、工作經歷和喜歡的粉絲頁中可以一定程度上地判斷出使用者的背景與喜好,若能利用分析過的資訊將使用者分群,以供交友或導向到可能喜歡的粉絲頁,就能開發潛在客戶進而掌握商機。 本研究旨在完成一個線上系統,透過Facebook上可供擷取個人的資料:學歷、工作經歷以及喜歡的粉絲頁等資訊,針對這些量化過的資訊,經Kmeans將使用者分群分類,藉以作為協同過濾式推薦。目前實驗結果將有效個人資料4417筆進行分群,以使用者喜歡的粉絲頁比例(本研究整合成48種)加上工作經歷與學歷,最終分成10群,以作為交叉推薦之憑據和延伸研究。研究過程分實驗組與對照組,實驗組是本研究推薦的10筆粉絲頁,也就是使用者與所屬群集質心比例相差較多的粉絲頁類型;對照組則是選取使用者與母體中有較多比例差距的10筆,以證明本研究的推薦模型有效。 最後由使用者針對兩組推薦結果進行滿意度評分之比較,總共收回使用者回饋68筆,實驗組與對照組的平均推薦滿意度分數分別為0.5743、0.4268,對兩者作信心水準為95%的t檢定,結果為有充分證據支持實驗組大於對照組,可證明本研究對於推薦準確性的幫助,達成本研究目的。 由此實驗可以確定在Facebook上以使用者屬性為基礎的粉絲頁與人脈推薦是有意義與價值的,也說明真實數據能應用在社群網站的研究。希冀本研究的結果能帶動其他社群網站研究朝使用真實數據去分析佐證,讓社群網站的研究結果能更貼近使用者的真實行為。Facebook is one of the most popular social websites in Taiwan, and it has over ...