論文提要內容: 壹 引言. 近年來,訊號傳送的途徑,已擺脫了傳統上著重管線傳送的優勢;有愈來愈多的訊號彌漫在廣闊的空間裡,而這種無線式的傳送所需面臨的問題是:不具有排他性.任何有接收器材的非原始接收者都可以截聽到訊息,由此因應而生的保密技術格外受矚目.密碼學(Cryptography)便是滿足此需要的學問.本論文所探討的排列多項式(Permutation Polynomial)是密碼學中重要的工具之一. 貳 論文主體. 所謂排列多項式,即是佈於代數體上的多項式,把此多項式當成函數而作用於代數體(Field)上,如果此函數據有一對一的性質,則是排列多項式.即f(x)=a_0+a_1 x1+⋯+a_n xn ϵ Fq[X] 且f(a)≠f(b),a,bϵFq,a≠b.在論文中,介紹先進學者對排列多項式的認識.如:Lagrange’s interpolation是利用函數值來描繪多項式.著名的學者Carlitz,利用特殊多項式來合成出排列多項式,論文中有更進一步的合成法提出.而Hermite跟Dickson學者則提出f^t函數其冪次的變化情形,來判別排列多項式之是否,是最通俗的判別理論. 此外,由吾人所蒐集的資料中發現,在祇有兩項的多項式中,被發現到其他更簡捷快速的判別方法,故二項式的多項式的探討是本論文的第一主題.對於xk+bxJ ϵ Fq[X],給予固定類型的q,k,j情形下,祇須檢定b是否具特殊性質就可決定是否為排列多項式,這是一種方法,另有學者並不固定q,k,j,反而從q,k,j數字下手,找尋出某種關連性,其結果使得係數b,只有當b=0時才有機會是排列多項式,剩下單項式的判別過程,就很容易了.上述兩方法本論文網羅大部份有關論文,綜合各家之長,並適當...