Some of the key factors that regulate growth and remodeling of tissues are fundamentally mechanical. However, it is important to take into account the role of biological availability to generate new tissue together with the stresses and strains in the processes of natural or pathological growth. In this sense, the model presented in this work is oriented to describe growth of vascular tissue under "stress driven growth" considering biological availability of the organism. The general theoretical framework is given by a kinematic formulation in large strain combined with the thermodynamic basis of open systems. The formulation uses a multiplicative decomposition of deformation gradient, splitting it in a growth part and visco-elast...