The first and second homology groups H_i for configuration spaces of framed two-dimensional particles and antiparticles, with annihilation included, are computed when up to two particles and an antiparticle are present. The set of ‘frames’ considered are S^2, SO(2) and SO(3). It is found that the H_1 groups are those of the ‘frames’ and are generated by a cycle corresponding to a 2π frame rotation. This same cycle is homologous to the exchange path -the spin -statistics theorem. Furthermore for the frame space SO(2), H_2 contains a Z subgroup which implies the existence of a nontrivial Wess-Zumino term. A rotationally and translationally invariant, topologically nontrivial Wess-Zumino term for a pair of anyons and an antianyon is exhibited ...