Background and Objective: Early-stage diagnosis of laryngeal cancer is of primary importance to reduce patient morbidity. Narrow-band imaging (NBI) endoscopy is commonly used for screening purposes, reducing the risks linked to a biopsy but at the cost of some drawbacks, such as large amount of data to review to make the diagnosis. The purpose of this paper is to present a strategy to perform automatic selection of informative endoscopic video frames, which can reduce the amount of data to process and potentially increase diagnosis performance. Methods: A new method to classify NBI endoscopic frames based on intensity, keypoint and image spatial content features is proposed. Support vector machines with the radial basis function and the one...