Chest radiography (CXR) is the most commonly used imaging modality and deep neural network (DNN) algorithms have shown promise in effective triage of normal and abnormal radiograms. Typically, DNNs require large quantities of expertly labelled training exemplars, which in clinical contexts is a major bottleneck to effective modelling, as both considerable clinical skill and time is required to produce high-quality ground truths. In this work we evaluate thirteen supervised classifiers using two large free-text corpora and demonstrate that bi-directional long short-term memory (BiLSTM) networks with attention mechanism effectively identify Normal, Abnormal, and Unclear CXR reports in internal (n = 965 manually-labelled reports, f1-score = 0....