Burgers' equation describes plane sound wave propagation through a thermoviscous fluid. If the boundary condition at the sound source is given as a pure sine wave, the exact solution is given by the Cole-Hopf transformation as a quotient between two Fourier series. Two approximate Fourier series representations of this solution are known: Fubini's (1935) solution, neglecting dissipation and valid at short distance from the sound source, and Fay's (1931) solution, valid far from the source. In the present investigation a linear system of equations is found, from which the coefficients in a series expansion of each Fourier coefficient can be derived one by one. Curves which join smoothly to Fubini's solution (valid up to s...