The paper asks whether diagrams in mathematics are particularly fruitful compared to other types of representations. In order to respond to this question a number of examples of propositions and their proofs are considered. In addition I use part of Peirce’s semiotics to characterise different types of signs used in mathematical reasoning, distinguishing between symbolic expressions and 2-dimensional diagrams. As a starting point I examine a proposal by Danielle Macbeth (2014). Macbeth explains how it can be that objects “pop up”, e.g., as a consequence of the constructions made in the diagrams of Euclid, that is, why they are fruitful. It turns out, however, that diagrams are not exclusively fruitful in this sense. By analysing the proofs ...