Initial Semantics aims at characterizing the syntax associated to a signature as the initial object of some category. We present an initial semantics result for typed higher-order syntax together with its formalization in the Coq proof assistant. The main theorem was first proved on paper in the second author’s PhD thesis in 2010, and verified formally shortly afterwards. To a simply–typed binding signature S over a fixed set T of object types we associate a category called the category of representations of S. We show that this category has an initial object Sigma(S), i.e. an object Sigma(S) from which there is precisely one morphism i_R : Sigma(S) -> R to any object R of this category. From its construction it will be clear that the objec...