The main topic of this thesis is the tropicalizations of Severi varieties, which we call tropical Severi varieties. Severi varieties are classical objects in algebraic geometry. They are parameter spaces of plane nodal curves. On the other hand, tropicalization is an operation defined in tropical geometry, which turns subvarieties of an algebraic torus into certain polyhedral objects in real vector spaces. By studying the tropicalizations, it may be possible to transform algebro-geometric problems into purely combinatorial ones. Thus, it is a natural question, “what are tropical Severi varieties?” In this thesis, we give a partial answer to this question: we obtain a description of tropical Severi varieties in terms of regular subdi...