Learning on graphs is an important problem in machine learning, computer vision and data mining. Traditional algorithms for learning on graphs primarily take into account only low-order connectivity patterns described at the level of individual vertices and edges. However, in many applications, high-order relations among vertices are necessary to properly model a real-life problem. In contrast to the low-order cases, in-depth algorithmic and analytic studies supporting high-order relations among vertices are still lacking. To address this problem, we introduce a new mathematical model family, termed inhomogeneous hypergraphs, which captures the high-order relations among vertices in a very extensive and flexible way. Specifically, as oppose...