The stability properties and dynamic behavior of steady and quasi-steady detonation theories are investigated through linear stability analysis and numerical simulation. A general, unsteady, three-dimensional formulation of the reactive Euler equations in a shock-fitted reference frame is derived. The formulation is specialized to three configurations: planar one-dimensional detonation, radially symmetric one-dimensional detonation, and two-dimensional detonation in a rectangular channel. High-order convergent numerical simulation schemes for these configurations are derived and used to study the linear and nonlinear stability of detonations. Shock-fitted numerical simulation is used to study the two-dimensional instability of steady ...
The propagation of non-ideal detonations arising from friction, heat transfer and reactions steps in...
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily conc...
The paper develops a description for the propagation of an unsupported, unsteady, multidimensional d...
The stability properties and dynamic behavior of steady and quasi-steady detonation theories are inv...
213 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2004.Linear stability properties a...
A detonation is a combustion-driven shock wave. Typically, a detonation will consist of an inert sho...
We present an overview of the current state of detonation stability theory and discuss its implicati...
The linear receptivity and stability of plane idealized detonation with one-step Arrhenius type reac...
The linear and nonlinear stability of Chapman-Jouguet (CJ) and overdriven detonations of Zeldovich-v...
Comparisons between direct numerical simulation (DNS) of detonation and detonation shock dynamics (D...
The nonlinear stability of cylindrically and spherically expanding detonation waves is investigated ...
The problem of the steady propagation and linear stability of a detonation wave is formulated in the...
WOS:000360952400005International audienceThis paper deals with some salient features of numerical de...
An asymptotic theory is presented for the dynamics of detonation when the radius of curvature of the...
Understanding the fundamental processes of detonation is essential for both energy and safety issues...
The propagation of non-ideal detonations arising from friction, heat transfer and reactions steps in...
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily conc...
The paper develops a description for the propagation of an unsupported, unsteady, multidimensional d...
The stability properties and dynamic behavior of steady and quasi-steady detonation theories are inv...
213 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2004.Linear stability properties a...
A detonation is a combustion-driven shock wave. Typically, a detonation will consist of an inert sho...
We present an overview of the current state of detonation stability theory and discuss its implicati...
The linear receptivity and stability of plane idealized detonation with one-step Arrhenius type reac...
The linear and nonlinear stability of Chapman-Jouguet (CJ) and overdriven detonations of Zeldovich-v...
Comparisons between direct numerical simulation (DNS) of detonation and detonation shock dynamics (D...
The nonlinear stability of cylindrically and spherically expanding detonation waves is investigated ...
The problem of the steady propagation and linear stability of a detonation wave is formulated in the...
WOS:000360952400005International audienceThis paper deals with some salient features of numerical de...
An asymptotic theory is presented for the dynamics of detonation when the radius of curvature of the...
Understanding the fundamental processes of detonation is essential for both energy and safety issues...
The propagation of non-ideal detonations arising from friction, heat transfer and reactions steps in...
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily conc...
The paper develops a description for the propagation of an unsupported, unsteady, multidimensional d...