The present study investigates moving contact lines in microfluidic confinements with rough topographies modeled with random generating functions. Using matched asymptotic expansion, the description of the whole contact line is obtained and the dynamic contact angle is extracted by extrapolating the bulk meniscus to the channel wall. Significant variations are observed in the contact angle because of the heterogeneities of the confining walls of the microfluidic channel. The effects of the surface wetting condition also play a crucial role in altering the description of the contact line bearing particular nontrivial interactions with the topological features of the solid boundaries. In an effort to assess the underlying consequences, two di...