We study the following set membership problem in the bit probe model: given a set S from a finite universe U, represent it in memory so that membership queries of the form "Is x in S?" can be answered with a small number of bitprobes. We obtain explicit schemes that come close to the information theoretic lower bound of Buhrman et al. [STOC 2000, SICOMP 2002] and improve the results of Radhakrishnan et al. [ESA 2001] when the size of sets and the number of probes is small. We show that any scheme that stores sets of size two from a universe of size m and answers membership queries using two bitprobes requires space Ω(m4/7). The previous best lower bound (shown by Buhrman et al. using information theoretic arguments) was Ω(√m). The same lowe...