Some generalizations of the classical Eisenstein and Schönemann Irreducibility Criteria and their applications are described. In particular some extensions of the Ehrenfeucht–Tverberg irreducibility theorem which states that a difference polynomial f(x) – g(y) in two variables is irreducible over a field K provided the degrees of f and g are coprime, are also given. The discussion of irreducibility of polynomials has a long history. The most famous irreducibility criterion for polynomials with coefficients in the ring Z of integers proved by Eisenstein [9] in 1850 states as follows: Eisenstein Irreducibility Criterion. Let F(x) = a<SUB>0</SUB>x<SUP>n</SUP> + a<SUB>1</SUB>x<SUP>n-1 </SUP>+ <SUP>...</SUP>+ a<SUB>n</SUB> be a polynomial with...
Praca licencjacka ma na celu przedstawienie ciekawych kryteriów nierozkładalności wielomianów. W roz...
Celem pracy licencjackiej jest poruszenie zagadnienia nierozkładalności wielomianów o współczynnikac...
In this note, we show that, for any f ∈ Z[x] and any prime number p, there exists g ∈ Z[x] for which...
Some generalizations of the classical Eisenstein and Schönemann Irreducibility Criteria and their ap...
One of the results generalizing Eisenstein Irreducibility Criterion states that if φ(x) = anxn+...
One of the results generalizing Eisenstein Irreducibility Criterion states that if φ(x) = anxn+...
Abstract. In [4] we showed that a polynomial over a Noetherian ring is divisible by some other polyn...
In 1956, Ehrenfeucht proved that a polynomial f <SUB>1</SUB>(x <SUB>1</SUB>) + · + f <SUB>n</SUB> (x...
Let ν be a valuation of any rank of a field K with value group G<SUB>ν</SUB> and f(X)= X<SUP>m</SUP>...
A well-known result of Ehrenfeucht states that a difference polynomial f(X)-g(Y) in two variables X,...
We present a simple proof of Königsberg's Criterion, [K] p.69 and also present families of irreducib...
We present a simple proof of Königsberg's Criterion, [K] p.69 and also present families of irreducib...
AbstractWe prove a criterion for the irreducibility of the polynomials in one indeterminate with the...
Abstract. In [3] we showed that a polynomial over a Noetherian ring is divisible by some other polyn...
AbstractFor polynomials of the form Q = P(f(X), g(Y), where P is a generalized difference polynomial...
Praca licencjacka ma na celu przedstawienie ciekawych kryteriów nierozkładalności wielomianów. W roz...
Celem pracy licencjackiej jest poruszenie zagadnienia nierozkładalności wielomianów o współczynnikac...
In this note, we show that, for any f ∈ Z[x] and any prime number p, there exists g ∈ Z[x] for which...
Some generalizations of the classical Eisenstein and Schönemann Irreducibility Criteria and their ap...
One of the results generalizing Eisenstein Irreducibility Criterion states that if φ(x) = anxn+...
One of the results generalizing Eisenstein Irreducibility Criterion states that if φ(x) = anxn+...
Abstract. In [4] we showed that a polynomial over a Noetherian ring is divisible by some other polyn...
In 1956, Ehrenfeucht proved that a polynomial f <SUB>1</SUB>(x <SUB>1</SUB>) + · + f <SUB>n</SUB> (x...
Let ν be a valuation of any rank of a field K with value group G<SUB>ν</SUB> and f(X)= X<SUP>m</SUP>...
A well-known result of Ehrenfeucht states that a difference polynomial f(X)-g(Y) in two variables X,...
We present a simple proof of Königsberg's Criterion, [K] p.69 and also present families of irreducib...
We present a simple proof of Königsberg's Criterion, [K] p.69 and also present families of irreducib...
AbstractWe prove a criterion for the irreducibility of the polynomials in one indeterminate with the...
Abstract. In [3] we showed that a polynomial over a Noetherian ring is divisible by some other polyn...
AbstractFor polynomials of the form Q = P(f(X), g(Y), where P is a generalized difference polynomial...
Praca licencjacka ma na celu przedstawienie ciekawych kryteriów nierozkładalności wielomianów. W roz...
Celem pracy licencjackiej jest poruszenie zagadnienia nierozkładalności wielomianów o współczynnikac...
In this note, we show that, for any f ∈ Z[x] and any prime number p, there exists g ∈ Z[x] for which...