The formalism of conformally invariant field theory on a 2-dimensional real manifold with an intrinsic metric is developed in the functional integral framework. This formalism is used to study the relationships between reparametrization, Weyl, conformal and BRST invariances for strings in generic backgrounds. Conformal invariance of string amplitudes in the presence of backgrounds is formulated in terms of the Virasoro conditions, i.e., that physical vertex operators generate (1,1) representations of the Virasoro algebra, or, equivalently, the condition Q|ψ>=0 on physical states |ψ>, where Q is the BRST charge. The consequences of these conditions are investigated in the case of specific backgrounds. Strings in group manifol...