A very well-known traditional approach in discriminant analysis is to use some linear (or nonlinear) combination of measurement variables which can enhance class separability. For instance, a linear (or a quadratic) classifier finds the linear projection (or the quadratic function) of the measurement variables that will maximize the separation between the classes. These techniques are very useful in obtaining good lower-dimensional views of class separability. Fisher's discriminant analysis, which is primarily motivated by the multivariate normal distribution, uses the first-and second-order moments of the training sample to build such classifiers. These estimates, however, are highly sensitive to outliers, and they are not reliable for hea...