Experimental data from different testing methodologies on different compacted clayey soils, with dominant bimodal pore size distribution, are presented and analysed, to provide a comprehensive picture of the evolution of the aggregated fabric along hydraulic and mechanical paths. Fabric changes are analysed both from the porous network viewpoint, by means of careful mercury intrusion porosimetry investigation, and from the soil skeleton viewpoint, by quantifying swelling and shrinkage of the aggregates in an environmental scanning electron microscopy study. The consequences of the aggregated fabric evolution on the water retention properties of compacted soils are analysed and discussed. A new model for water retention domain is proposed, w...