We introduce a new way of composing proofs in rule-based proof systems that generalizes tree-like and dag-like proofs. In the new definition, proofs are directed graphs of derived formulas, in which cycles are allowed as long as every formula is derived at least as many times as it is required as a premise. We call such proofs circular. We show that, for all sets of standard inference rules, circular proofs are sound. We first focus on the circular version of Resolution, and see that it is stronger than Resolution since, as we show, the pigeonhole principle has circular Resolution proofs of polynomial size. Surprisingly, as proof systems for deriving clauses from clauses, Circular Resolution turns out to be equivalent to Sherali-Adams, a pr...