Data-level parallelism is frequently ignored or underutilized. Achieved through vector/SIMD capabilities, it can provide substantial performance improvements on top of widely used techniques such as thread-level parallelism. However, manual vectorization is a tedious and costly process that needs to be repeated for each specific instruction set or register size. In addition, automatic compiler vectorization is susceptible to code complexity, and usually limited due to data and control dependencies. To address some these issues, Arm recently released a new vector ISA, the Scalable Vector Extension (SVE), which is Vector-Length Agnostic (VLA). VLA enables the generation of binary files that run regardless of the physical vector register lengt...