The depth of the planetary boundary-layer (PBL) is defined as the height of the inversion level separating the free troposphere (FT) from the boundary-layer (Stull, 1988). Reliable representation of PBL height is important in applications ranging from climate studies to air quality modeling. Convective turbulent mixing processes are dominant in the mixing layer of the PBL and have a major influence on the growth and transport of atmospheric pollutants. In recent years, lidar (laser radar) has proven to be a useful operational tool for nearly continuous monitoring of the lowest levels of the atmosphere with high spatial (~ 3.75 m) and temporal (< 5 min) resolutions. Four Raman-elastic multi-wavelength lidar stations from EARLINET (European A...