An eigenvalue characterization of antipodal distance-regular graphs

  • Fiol Mora, Miquel Àngel

Abstract

Let $\Gamma$ be a regular (connected) graph with $n$ vertices and $d+1$ distinct eigenvalues. As a main result, it is shown that $\Gamma$ is an $r$-antipodal distance-regular graph if and only if the distance graph $\Gamma_d$ is constituted by disjoint coies of the complete graph $K_r$, with $r$ satisfying an expression in terms of $n$ and the distinct eigenvalues.Peer Reviewe

Extracted data

We use cookies to provide a better user experience.