Within a random-matrix theory approach, we use the nearest-neighbour energy-level spacing distribution P(s) and the entropic eigenfunction localization length l to study spectral and eigenfunction properties (of adjacency matrices) of weighted random-geometric and random-rectangular graphs. A random-geometric graph (RGG) considers a set of vertices uniformly and independently distributed on the unit square, while for a random-rectangular graph (RRG) the embedding geometry is a rectangle. The RRG model depends on three parameters: The rectangle side lengths a and 1/a, the connection radius r and the number of vertices N. We then study in detail the case a = 1, which corresponds to weighted RGGs and explore weighted RRGs characterized by a si...