En este trabajo se introducen los conceptos clave referentes a los sistemas formales, y después se da una demostración del teorema de incompletitud de Gödel. A grandes rasgos, este teorema dice que cualquier sistema formal en el que se pueda hacer aritmética va a estar incompleto; es decir, que existen verdades que son matemáticamente imposibles de demostrar
In a famous paper of 1931, Gödel proved that any formalization of elementary Arithmetic is incomplet...
Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy...
This thesis gives a rigorous development of sentential logic and first-order logic as mathematical m...
Tras un capítulo preliminar dedicado a la lógica proposicional y a la lógica de predicados, se intod...
En esta memoria, explicamos y demostramos los Teoremas de Incompletitud de Gödel, que muestran que n...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
Esta dissertação estabelece a incompletude de um sistema formal cujas únicas constantes não-lógicas ...
This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness res...
Kurt Gödel demostró en 1931, que para todo sistema formal Z recursivo lo suficientemente...
In 1931 Gödel released his Incompleteness Theorem. His theorem was the opposite of what other mathem...
Incompleteness or inconsistency? Kurt Godel shocked the mathematical community in 1931 when he prove...
The goal of this tutorial is to introduce, review, and discuss selected concepts that play a key rol...
Kurt Gödel (1906–1978) shook the mathematical world in 1931 by a result that has become an icon of 2...
El objetivo de este trabajo es analizar el impacto de los teoremas de incompletitud en el debate sob...
Mathematical LogicIn 1931 Kurt Gödel established a representation between a formal system and the se...
In a famous paper of 1931, Gödel proved that any formalization of elementary Arithmetic is incomplet...
Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy...
This thesis gives a rigorous development of sentential logic and first-order logic as mathematical m...
Tras un capítulo preliminar dedicado a la lógica proposicional y a la lógica de predicados, se intod...
En esta memoria, explicamos y demostramos los Teoremas de Incompletitud de Gödel, que muestran que n...
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 20...
Esta dissertação estabelece a incompletude de um sistema formal cujas únicas constantes não-lógicas ...
This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness res...
Kurt Gödel demostró en 1931, que para todo sistema formal Z recursivo lo suficientemente...
In 1931 Gödel released his Incompleteness Theorem. His theorem was the opposite of what other mathem...
Incompleteness or inconsistency? Kurt Godel shocked the mathematical community in 1931 when he prove...
The goal of this tutorial is to introduce, review, and discuss selected concepts that play a key rol...
Kurt Gödel (1906–1978) shook the mathematical world in 1931 by a result that has become an icon of 2...
El objetivo de este trabajo es analizar el impacto de los teoremas de incompletitud en el debate sob...
Mathematical LogicIn 1931 Kurt Gödel established a representation between a formal system and the se...
In a famous paper of 1931, Gödel proved that any formalization of elementary Arithmetic is incomplet...
Full proofs of the Gödel incompleteness theorems are highly intricate affairs. Much of the intricacy...
This thesis gives a rigorous development of sentential logic and first-order logic as mathematical m...