© Published under licence by IOP Publishing Ltd. A positive definite second order ordinary differential eigenvalue problem with coefficients nonlinearly depending on the spectral parameter is studied. This differential nonlinear eigenvalue problem has an increasing sequence of positive simple eigenvalues, which correspond to a normalized system of eigenfunctions. The original differential nonlinear eigenvalue problem is approximated by a mesh scheme of the finite difference method on the uniform grid. New error estimates for approximate eigenvalues and approximate eigenfunctions in dependence on mesh size and eigenvalue size are established. Obtained theoretical results are generalizations of well-known results for differential eigenvalue p...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonli...
© The Authors, published by EDP Sciences, 2017. The problem of finding the minimal eigenvalue corres...
© Published under licence by IOP Publishing Ltd. A positive definite second order ordinary different...
The positive definite ordinary differential nonlinear eigenvalue problem of the second order with ho...
© 2019, Pleiades Publishing, Ltd. The positive definite ordinary differential nonlinear eigenvalue p...
© 2019, Pleiades Publishing, Ltd. The positive definite ordinary differential nonlinear eigenvalue p...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
© 2018, Pleiades Publishing, Ltd. The problem of finding the minimal eigenvalue corresponding to a p...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonli...
© The Authors, published by EDP Sciences, 2017. The problem of finding the minimal eigenvalue corres...
© Published under licence by IOP Publishing Ltd. A positive definite second order ordinary different...
The positive definite ordinary differential nonlinear eigenvalue problem of the second order with ho...
© 2019, Pleiades Publishing, Ltd. The positive definite ordinary differential nonlinear eigenvalue p...
© 2019, Pleiades Publishing, Ltd. The positive definite ordinary differential nonlinear eigenvalue p...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
A differential eigenvalue problem with a nonlinear dependence on the parameter is approximated by th...
© 2018, Pleiades Publishing, Ltd. The problem of finding the minimal eigenvalue corresponding to a p...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
To solve a one-dimensional second-order differential eigenvalue problem, we use the finite-element m...
The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonli...
© The Authors, published by EDP Sciences, 2017. The problem of finding the minimal eigenvalue corres...