A mathematical model for simulating the densification of bubbly glacier ice is used to interpret the following experimental data from the Vostok (central Antarctica) ice core: two ice-porosity profiles obtained by independent methods and a bubble-pressure profile obtained by direct measurements of air pressure within individual bubbles. The rheological properties of pure polycrystalline ice are deduced from the solution of the inverse problem. The model and the inferred ice-flow law are then validated, using porosity profiles from seven other ice cores drilled in Antarctica and Greenland, in the temperature range from -55° to -20°C. The following expression is adopted for the constitutive law: 2ė = (τ/μ1 + τα/μ2) exp[Q(1/Ts - 1/T)/Rs] where...