Data analysts are confronted with the choice of selecting an appropriate algorithm with suitable hyperparameters for datasets that they want to analyze. For this, they typically execute and evaluate many configurations in a trial-and-error manner. However, for novice data analysts this is a time-consuming task. Recent advances in the research area of AutoML address this problem by automatically find a suitable algorithm with appropriate hyperparameters. Yet, these systems are only applicable for supervised learning tasks and not for unsupervised learning. In the scope of this work, existing AutoML systems are analyzed in detail. Subsequently, a concept is developed that uses components from existing AutoML systems but modifies them in such...