AI Safety researchers attempting to align values of highly capable intelligent systems with those of humanity face a number of challenges including personal value extraction, multi-agent value merger and finally in-silico encoding. State-of-the-art research in value alignment shows difficulties in every stage in this process, but merger of incompatible preferences is a particularly difficult challenge to overcome. In this paper we assume that the value extraction problem will be solved and propose a possible way to implement an AI solution which optimally aligns with individual preferences of each user. We conclude by analyzing benefits and limitations of the proposed approach