Image-based 3D reconstruction has become a robust technology for recovering accurate and realistic models of real-world objects and scenes. A common pipeline for 3D reconstruction is to first apply Structure-from-Motion (SfM), which recovers relative poses for the input images and sparse geometry for the scene, and then apply Multi-view Stereo (MVS), which estimates a dense depthmap for each image. While this two-stage process is quite effective in many 3D modeling scenarios, there are limits to what can be reconstructed. This dissertation focuses on three particular scenarios where the SfM+MVS pipeline fails and introduces new approaches to accomplish each reconstruction task. First, I introduce a novel method to recover dense surface...