We consider an aggregation-diffusion equation modelling particle interaction with non-linear diffusion and non-local attractive interaction using a homogeneous kernel (singular and non-singular) leading to variants of the Keller-Segel model of chemotaxis. We analyse the fair-competition regime in which both homogeneities scale the same with respect to dilations. Our analysis here deals with the one-dimensional case, building on the work in Calvez et al. (Equilibria of homogeneous functionals in the fair-competition regime), and provides an almost complete classification. In the singular kernel case and for critical interaction strength, we prove uniqueness of stationary states via a variant of the Hardy-Littlewood-Sobolev inequality. Using ...