Time-domain numerical solutions of a nonlinear active cochlear model forced by click stimuli are analyzed with a time-frequency wavelet technique to identify the components of the otoacoustic response associated with different generation mechanisms/places. Previous experimental studies have shown evidence for the presence of at least two components in the transient otoacoustic response: A long-latency response, growing compressively with increasing stimulus level, and a shorter-latency response, characterized by faster growth. The possible mechanisms for the generation of the two components are discussed using the results of the numerical simulations. The model is a one-dimensional (1-D) transmission line model with nonlinear and nonlocal...