Out of a right, circular cylinder of height H and cross-section a disc of radius R+ one removes a stack of nH/ parallel, equi-spaced cylinders Cj,j=1,2,...,n, each of radius R and height . Here , are fixed positive numbers and is a positive parameter to be allowed to go to zero. The union of the Cj almost fills in the sense that any two contiguous cylinders Cj are at a mutual distance of the order of and that the outer shell, i.e., the gap S=-o has thickness of the order of (o is obtained from by formally setting =0). The cylinder from which the Cj are removed, is an almost disconnected structure, it is denoted by , and it arises in the mathematical theory of phototransduction. For each >0 we consider the heat equation in the almost...