In this article we introduce the abstract notion of generalized wavelet (affine) groups over finite fields as the finite group of generalized dilations, and translations. We then present a unified theoretical linear algebra approach to the theory of generalized wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as a finite coherent sum of generalized wavelet coefficients as well
this paper we continue the application of powerful methods of wavelet analysis to polynomial approxi...
International audienceWe consider continuous wavelet decompositions, mainly from geometric and algeb...
. Generalized FFTs are efficient algorithms for computing a Fourier transform of a function defined ...
This article introduces a systematic study for computational aspects of classical wavelet transforms...
In this article we introduce the notion of finite wave packet groups over finite fields as the finit...
Abstract. This article introduces the abstract notion of finite wave packet groups over finite field...
The discrete wavelet transform was originally a linear operator that works on signals that are model...
AbstractAn arithmetic version of continuous wavelet analysis is described. Starting from a square-in...
Abstract – This paper introduces some foundations of wavelets over Galois fields. Standard orthogona...
summary:Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matri...
The finite Fourier transform is discussed from the viewpoint of finite dimensional algebras over com...
AbstractIn this paper we want to show how the language of group theory can be used to unify the diff...
We investigate the connections between continuous and discrete wavelet transforms on the basis of al...
AbstractThe construction of the well-known continuous wavelet transform has been extended before to ...
Generalized FFTs are efficient algorithms for computing a Fourier transform of a function defined on...
this paper we continue the application of powerful methods of wavelet analysis to polynomial approxi...
International audienceWe consider continuous wavelet decompositions, mainly from geometric and algeb...
. Generalized FFTs are efficient algorithms for computing a Fourier transform of a function defined ...
This article introduces a systematic study for computational aspects of classical wavelet transforms...
In this article we introduce the notion of finite wave packet groups over finite fields as the finit...
Abstract. This article introduces the abstract notion of finite wave packet groups over finite field...
The discrete wavelet transform was originally a linear operator that works on signals that are model...
AbstractAn arithmetic version of continuous wavelet analysis is described. Starting from a square-in...
Abstract – This paper introduces some foundations of wavelets over Galois fields. Standard orthogona...
summary:Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matri...
The finite Fourier transform is discussed from the viewpoint of finite dimensional algebras over com...
AbstractIn this paper we want to show how the language of group theory can be used to unify the diff...
We investigate the connections between continuous and discrete wavelet transforms on the basis of al...
AbstractThe construction of the well-known continuous wavelet transform has been extended before to ...
Generalized FFTs are efficient algorithms for computing a Fourier transform of a function defined on...
this paper we continue the application of powerful methods of wavelet analysis to polynomial approxi...
International audienceWe consider continuous wavelet decompositions, mainly from geometric and algeb...
. Generalized FFTs are efficient algorithms for computing a Fourier transform of a function defined ...