The elimination of corrosion, reduction of mass and the improvement of mechanical, electrical and thermal conductivity properties are the main aims to progress bipolar plate technology for polymer electrolyte membrane fuel cells. In addition, the large numbers of bipolar plates required in automotive fuel cell stacks (on the order of 400 plates per vehicle) will demand mass production to meet future demands as well as reduce costs through cheap production processes. Highly conductive, low density, low cost and corrosion-resistant materials that can be utilised in production processes such as injection and compression moulding are ideal candidates for bipolar plates. Carbon black, graphite, magnetite with polyethylene composites were made an...