© 2017 Springer Science+Business Media New York We consider the problem of scheduling a number of jobs on m identical processors sharing a continuously divisible resource. Each job j comes with a resource requirement [InlineEquation not available: see fulltext.]. The job can be processed at full speed if granted its full resource requirement. If receiving only an x-portion of (Formula presented.), it is processed at an x-fraction of the full speed. Our goal is to find a resource assignment that minimizes the makespan (i.e., the latest completion time). Variants of such problems, relating the resource assignment of jobs to their processing speeds, have been studied under the term discrete–continuous scheduling. Known results are either very ...