The uncertainties in scientific studies for climate risk management can be investigated at three levels of complexity: “ABC”. The most sophisticated involves “Analyzing” the full range of uncertainty with large multi-model ensemble experiments. The simplest is about “Bounding” the uncertainty by defining only the upper and lower limits of the likely outcomes. The intermediate approach, “Crystallizing” the uncertainty, distills the full range to improve the computational efficiency of the “Analyze” approach. Modelers typically dictate the study design, with decision-makers then facing difficulties when interpreting the results of ensemble experiments. We assert that to make science more relevant to decision-making, we must begin by consideri...