We consider optimizing the expected value of some performance measure of a dynamic stochastic simulation with a statistical guarantee for optimality when the decision variables are discrete, in particular, integer-ordered; the number of feasible solutions is large; and the model execution is too slow to simulate even a substantial fraction of them. Our goal is to create algorithms that stop searching when they can provide inference about the remaining optimality gap similar to the correct-selection guarantee of ranking and selection when it simulates all solutions. Further, our algorithm remains competitive with fixed-budget algorithms that search efficiently but do not provide such inference. To accomplish this we learn and exploit spatial...