We consider measures of Granger causality in quantiles, which detect and quantify both linear and nonlinear causal effects between random variables. The measures are based on nonparametric quantile regressions and defined as logarithmic functions of restricted and unrestricted expectations of quantile check loss functions. They can consistently be estimated by replacing the unknown expectations of check loss functions by their nonparametric kernel estimates. We derive a Bahadur-type representation for the nonparametric estimator of the measures. We establish the asymptotic distribution of this estimator, which can be used to build tests for the statistical significance of the measures. Thereafter, we show the validity of a smoothed local bo...