to appearInternational audienceProbabilistic graphical models offer a powerful framework to account for the dependence structure between variables, which is represented as a graph. However, the dependence between variables may render inference tasks intractable. In this paper, we review techniques exploiting the graph structure for exact inference, borrowed from optimisation and computer science. They are built on the principle of variable elimination whose complexity is dictated in an intricate way by the order in which variables are eliminated. The so‐called treewidth of the graph characterises this algorithmic complexity: low‐treewidth graphs can be processed efficiently. The first point that we illustrate is therefore the idea that for ...