The research work presented in this thesis concerns the development of unsupervised learning approaches adapted to large relational and dynamic data-sets. The combination of these three characteristics (size, complexity and evolution) is a major challenge in the field of data mining and few satisfactory solutions exist at the moment, despite the obvious needs of companies. This is a real challenge, because the approaches adapted to relational data have a quadratic complexity, unsuited to the analysis of dynamic data. We propose here two complementary approaches for the analysis of this type of data. The first approach is able to detect well-separated clusters from a signal created during an incremental reordering of the dissimilarity matrix...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
This dissertation takes a relationship-based approach to cluster analysis of high (1000 and more) d...
International audienceThis paper introduces hard clustering algorithms that are able to partition ob...
The research work presented in this thesis concerns the development of unsupervised learning approac...
The main objective of this thesis is to propose a dynamic clustering algorithm that can handle not o...
International audienceThis paper introduces an improvement of a clustering algorithm \citep{decarval...
The task of clustering is at the same time challenging and very important in Artificial Intelligence...
Dans cette thèse, nous abordons les problèmes bien connus de clustering et de fouille de règles d’as...
The research described in this habilitation document proposes new machine learning methods dedicated...
Nous proposons dans ces travaux des algorithmes distribués de clustering basé sur la taille destinés...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
Les graphes sont omniprésents dans de nombreux domaines de recherche, allant de la biologie à la soc...
Data clustering is a major problem encountered mainly in related fields of Artificial Intelligence, ...
Recently, graph clustering has become one of the most used techniques to understand structures and i...
In this thesis, we present the problem of the visual data mining. We generally notice that it is spe...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
This dissertation takes a relationship-based approach to cluster analysis of high (1000 and more) d...
International audienceThis paper introduces hard clustering algorithms that are able to partition ob...
The research work presented in this thesis concerns the development of unsupervised learning approac...
The main objective of this thesis is to propose a dynamic clustering algorithm that can handle not o...
International audienceThis paper introduces an improvement of a clustering algorithm \citep{decarval...
The task of clustering is at the same time challenging and very important in Artificial Intelligence...
Dans cette thèse, nous abordons les problèmes bien connus de clustering et de fouille de règles d’as...
The research described in this habilitation document proposes new machine learning methods dedicated...
Nous proposons dans ces travaux des algorithmes distribués de clustering basé sur la taille destinés...
Nowadays, decision processes in various areas (marketing, biology, etc) require the processing of in...
Les graphes sont omniprésents dans de nombreux domaines de recherche, allant de la biologie à la soc...
Data clustering is a major problem encountered mainly in related fields of Artificial Intelligence, ...
Recently, graph clustering has become one of the most used techniques to understand structures and i...
In this thesis, we present the problem of the visual data mining. We generally notice that it is spe...
Notre capacité grandissante à collecter et stocker des données a fait de l'apprentissage non superv...
This dissertation takes a relationship-based approach to cluster analysis of high (1000 and more) d...
International audienceThis paper introduces hard clustering algorithms that are able to partition ob...