Persistent memory makes it possible to recover in-memory data structures following a failure instead of rebuilding them from state saved in slow secondary storage. Implementing such recoverable data structures correctly is challenging as their underlying algorithms must deal with both parallelism and failures, which makes them especially susceptible to programming errors. Traditional proofs of correctness should therefore be combined with other methods, such as model checking or software testing, to minimize the likelihood of uncaught defects. This research focuses specifically on the algorithmic principles of software testing, particularly linearizability analysis, for multi-word persistent synchronization primitives such as conditional sw...