Three-coloring and list three-coloring of graphs without induced paths on seven vertices

  • Bonomo, Flavia
  • Chudnovsky, Mariana
  • Maceli, Peter
  • Schaudt, Oliver
  • Stein, Maya
  • Zhong, Mingxian
Publication date
August 2018
Publisher
Springer Science and Business Media LLC
Journal
COMBINATORICA

Abstract

In this paper we present a polynomial time algorithm that determines if an input graph containing no induced seven-vertex path is 3-colorable. This affirmatively answers a question posed by Randerath, Schiermeyer and Tewes in 2002. Our algorithm also solves the list-coloring version of the 3-coloring problem, where every vertex is assigned a list of colors that is a subset of {1,2,3}, and gives an explicit coloring if one exists.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la C...

Extracted data

Related items

Better 3-coloring algorithms: Excluding a triangle and a seven vertex path
  • Bonomo, Flavia
  • Chudnovsky, Mariana
  • Goedgebeur, Jan
  • Maceli, Peter
  • Schaudt, Oliver
  • Stein, Maya
  • Zhong, Mingxian
January 2021

We present an algorithm to color a graph G with no triangle and no induced 7-vertex path (i.e., a {P...

A Computation on Any 3-Coloring Graph is a Pproblem
  • X.-J. Wang
  • T.-Q. Wang
May 2021

It is one of the open problems, whether or not the algorithm for a 3-coloring graph is in polynomial...

Approximately Coloring Graphs Without Long Induced Paths
  • Chudnovsky, Maria
  • Schaudt, Oliver
  • Spirkl, Sophie
  • Stein, Maya
  • Zhong, Mingxian
January 2019

It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class o...

We use cookies to provide a better user experience.