Although aquatic organisms are increasingly exposed to pollutants and abnormally high temperatures as a consequence of climate change, interactive effects between those stressors remain poorly assessed. Especially in ectotherms, such as fish, increases in ambient temperature are expected to affect fitness-related traits and physiology. We used the turquoise killifish Nothobranchius furzeri to study the effects of a range of 3,4-dichloroaniline concentrations (0, 50, 100 μg/L) in combination with two temperature conditions (control and control +4 °C) during four months of exposure. As part of an integrated multi-level approach, we quantified effects on classic life history traits (size, maturation time, body mass, fecundity), critical therma...